789 research outputs found

    Are we seeing the beginnings of Inflation?

    Full text link
    Phantom Cosmology provides an unique opportunity to "connect" the phantom driven (low en- ergy meV scale) dark energy phase to the (high energy GUT scale) inflationary era. This is possible because the energy density increases in phantom cosmology. We present a concrete model where the energy density, but not the scale factor, cycles through phases of standard radiation/matter domi- nation followed by dark energy/inflationary phases, and the pattern repeating itself. An interesting feature of the model is that once we include interactions between the "phantom fluid" and ordinary matter, the Big rip singularity is avoided with the phantom phase naturally giving way to a near exponential inflationary expansion.Comment: 17 pages, 1 figur

    A numerical study of the correspondence between paths in a causal set and geodesics in the continuum

    Full text link
    This paper presents the results of a computational study related to the path-geodesic correspondence in causal sets. For intervals in flat spacetimes, and in selected curved spacetimes, we present evidence that the longest maximal chains (the longest paths) in the corresponding causal set intervals statistically approach the geodesic for that interval in the appropriate continuum limit.Comment: To the celebration of the 60th birthday of Rafael D. Sorki

    Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems

    Full text link
    UHV dynamic force and energy dissipation spectroscopy in non-contact atomic force microscopy were used to probe specific interactions with composite systems formed by encapsulating inorganic compounds inside single-walled carbon nanotubes. It is found that forces due to nano-scale van der Waals interaction can be made to decrease by combining an Ag core and a carbon nanotube shell in the Ag@SWNT system. This specific behaviour was attributed to a significantly different effective dielectric function compared to the individual constituents, evaluated using a simple core-shell optical model. Energy dissipation measurements showed that by filling dissipation increases, explained here by softening of C-C bonds resulting in a more deformable nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based on force and dissipation measurements. These findings have two different implications for potential applications: tuning the effective optical properties and tuning the interaction force for molecular absorption by appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure

    Evidence for shape coexistence in 98^{98}Mo

    Full text link
    A γγ\gamma\gamma angular correlation experiment has been performed to investigate the low-energy states of the nucleus 98^{98}Mo. The new data, including spin assignments, multipole mixing ratios and lifetimes reveal evidence for shape coexistence and mixing in 98^{98}Mo, arising from a proton intruder configuration. This result is reproduced by a theoretical calculation within the proton-neutron interacting boson model with configuration mixing, based on microscopic energy density functional theory. The microscopic calculation indicates the importance of the proton particle-hole excitation across the Z=40 sub-shell closure and the subsequent mixing between spherical vibrational and the γ\gamma-soft equilibrium shapes in 98^{98}Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.

    Testing the magnetotail configuration based on observations of low‐altitude isotropic boundaries during quiet times

    Full text link
    We investigate the configuration of the geomagnetic field on the nightside magnetosphere during a quiet time interval based on National Oceanic and Atmospheric Administration Polar Orbiting Environment Satellites Medium Energy Proton and Electron Detector (NOAA/POES MEPED) measurements in combination with numerical simulations of the global terrestrial magnetosphere using the Space Weather Modeling Framework. Measurements from the NOAA/POES MEPED low‐altitude data sets provide the locations of isotropic boundaries; those are used to extract information regarding the field structure in the source regions in the magnetosphere. In order to evaluate adiabaticity and mapping accuracy, which is mainly controlled by the ratio between the radius of curvature and the particle’s Larmor radius, we tested the threshold condition for strong pitch angle scattering based on the MHD magnetic field solution. The magnetic field configuration is represented by the model with high accuracy, as suggested by the high correlation coefficients and very low normalized root‐mean‐square errors between the observed and the modeled magnetic field. The scattering criterion, based on the values of k=Rcρ ratio at the crossings of magnetic field lines, associated with isotropic boundaries, with the minimum B surface, predicts a critical value of kCR∌33. This means that, in the absence of other scattering mechanisms, the strong pitch angle scattering takes place whenever the Larmor radius is ∌33 times smaller than the radius of curvature of the magnetic field, as predicted by the Space Weather Modeling Framework.Key PointsWe tested the threshold condition for strong pitch angle scattering based on the MHD magnetic fieldSWMF model suggests a threshold condition for strong pitch angle scattering of k = 33For quiet time, the k parameter varies within 2 orders of magnitudePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135070/1/jgra52310.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135070/2/jgra52310_am.pd

    Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method

    Get PDF
    Pyrrolizidine alkaloids (PAs) are a class of toxic compounds found in the composition of more than 6000 plants. People can be exposed to PAs by consuming phytotherapeutic products, food from crops contaminated with seeds of some species with high content of PAs, and/ or contaminated animal products like bee products. For this reason we developed and validated a method for quantitative determination of PAs, from the most frequently contaminated food sources, honey and flour. Colorimetric Ehrlich reagent method was used with standard addition (1mg/kg senecionine). The extraction solvent was methanol 50% acidified with citric acid to pH 2-3, as this solvent can be used for alkaloids and N-oxides. We found that, in extracting the alkaloid only once from the dietary sources, the percent of recovery is low (52.5% for honey, and 45.75% for flour). Using successive extractions, three times with the same solvent, the senecionine retrieval percentage increased to 86.0% for honey and 76.0% for flour. The method was validated using the following parameters: selectivity, linearity (0,25- 20 mg/ mL senecionine), accuracy (average recovery 93.5 - 107.93%) and precision (RSD 3,26-4.55%.). The calculated limit of quantification (0.174 mg/ mL) makes this method applicable for determining Pas occurring at toxic levels for consumers

    Methods of Age Estimation by Dentition in Sus scrofa ferus sp.

    Get PDF
    In this study we present the practical method of age estimation by dentition in European wild boar Sus scrofa ferus. The dentition age estimation at this species is extremely important for establishing correlations between it and aspects of the body conformation and trophy value, in a strong linkage with the area bonitation, with the population genetic value and veterinary health status. We present the deciduous and permanent teeth aspect, at different ages: four months, six months, one year, one and a half years, two years, two and a half years, three years, five years, seven years, nine years and more. There are illustrated the aspects of incisors, canines, premolars and molars. Those aspects were confirmed by estimations made on 234 wild boars collected from Transylvania, in 2008 and 2009

    Assessing the role of oxygen on ring current formation and evolution through numerical experiments

    Full text link
    We address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single‐fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics‐based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics‐based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross‐polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.Key PointsLow O+/H+ ratio produced stronger ring currentInclusion of physics‐based ionospheric outflow leads to a reduction in the CPCPOxygen presence is linked to a nightside reconnection point closer to the EarthPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112251/1/jgra51856.pd

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201
    • 

    corecore